Sep 24 2012

Visualizar la música, oír las matemáticas (3)

Contribución a la Edición 3,141592 del Carnaval de Matemáticas.

 

Web de “Carnaval de Matemáticas”
 

Web de :: ZTFNews.org, blog anfitrión

Preliminares

En el artículo anterior comentábamos el concepto de transformación temática en música, y dejábamos entrever que iba a servir no sólo para construir cánones (única forma musical que hemos tratado, por levemente que sea, hasta ahora) sino para la propia construcción de líneas melódicas. En este artículo exploraremos con detenimiento muchas de estas opciones.

Las cuatro transformaciones: un juego con espejos que se deslizan

Tomo prestado el título a Borges para algo en lo que el maestro argentino seguramente no pensó: las llamadas sonoramente las cuatro transformaciones temáticas de contrapunto.

En el dibujo de arriba podemos apreciar lo que seguramente todos vemos por las mañanas desde nuestras respectivas ventanas: una apacible escena bucólica en que los dos tigres, indiferentes a la sañuda ferocidad de los unicornios beben tranquilamente, reflejándose todos ellos en las serenas aguas del lago.

Una mirada más detenida nos revelará que la imagen presenta varias simetrías. Con respecto a un eje vertical que pusiéramos en el centro, la imagen presenta lo que nuestros amigos matemáticos denominaba simetría axial vertical. Y mucho me sorprendería que no hayáis captado ya que con respecto aun eje horizontal pasa exactamente los mismo (simetría axial horizontal).

Pues bien: este juego de simetrías es un análogo sumamente exacto de las llamadas cuatro transformaciones.

Nota para espías: es perfectamente posible emplear lo que aquí vamos a ver para crear sistemas de cifrado, pero en mi opinión en este caso lejos de servir para clarificar puntos, se enturbiarían las aguas. Con pesar y con el deseo de volver a encontrarla por el camino decimos pues adiós a Mata-Hari. Hasta pronto, muñeca.

En el gráfico podemos distinguir cada una de las transformaciones.

Material original: en rigor no debería considerarse una transformación, pero el nombre tiene ya una inercia a la que es difícil renunciar. Mucho más acertado sería hablar de las cuatro formas básicas de un tema o material. Las otras tres posibilidades tienen mucho más peso, y algunas de ellas llegan a alcanzar una extraordinaria importancia.

Inversión o movimiento contrario

Sería la transformación equivalente a la simetría axial horizontal del tema que estemos tratando. O sea: como si pusiéramos un espejo debajo de ese material.

Musicalmente esto se traduce en que conservamos el intervalo (que es como los músicos denominamos a la distancia entre dos notas) pero invertimos su dirección (es decir, cambiamos los intervalos ascendentes por descendentes, y viceversa).

Aunque normalmente nada puede decirse sobre la mayor o menor eficacia de una transformación concreta, dado que depende mucho del material con el que estemos trabajando, sí es cierto que la inversión es, con diferencia, la forma de mutar el material que suele resultar más fácil de reconocer a cualquier oído. Para intentar demostrarlo os pongo aquí este audio, consistente en la inversión (con escasas modificaciones) de una música muy conocida, con el fácil desafío de que intentéis decirme cuál es. AL primero que lo ponga en los comentarios le será concedido el título de marqués morganático de Potsdam 1747.

[audio:http://enriqueblanco.net/wp-content/uploads/2011/11/PfdercheAA.mp3|titles=Inversión]

Y sería bueno que nos detuviéramos un momento en este concepto de eficacia: que las transformaciones temáticas nos generen un conjunto de posibilidades nuevas no quiere decir en modo alguno que todas ellas sean idénticamente utilizables. Cosas tan claras como la mayor o menor adecuación de una transformación dada a nuestros propósitos, o tan intangibles como la cercanía a nuestro gusto personal van a hacernos preferir unas versiones u otras.

Podemos realizar un gráfico semejante al del artículo anterior donde se hace evidente que la técnica equivale a la aplicación de un giro (si hay transporte) y una simetría, también empleando las siete primeras notas de la Invención número 1 de Bach, de la que algo hablaremos en el artículo siguiente.

Añadamos desde este momento, en que ya disponemos de dos tipos de transformación (transporte e inversión) en que siempre es posible combinar las transformaciones. En este caso, podemos por ejemplo transportar una inversión a cualquier altura que deseemos.

Os pongo, de momento, como ejemplo un canon de la extraordinaria “Ofrenda musical”, concretamente el canon a dos por movimiento contrario. La versión pudiera ser mejor, pero la que os pongo tiene la ventaja de contar con partitura, de forma que podéis visualizar fácilmente como bajo la melodía de la flauta (denominada tema regio, ver en casi cualquier lugar de este blog) las otras dos voces van espejándose.

Nota para matemáticos recalcitrantes: aquí tenéis unas notas sobre cómo realizar esta transformación por medio de cálculos.

Retrogradación: la reina del baile

Todo buen aficionado al manga sabe que se lee al revés. En lugar de comenzarse por la izquierda para seguir hacia la derecha, hacemos exactamente lo contrario. La retrogradación equivale exactamente a la lectura manga de un tema determinado. Comenzamos leyendo desde la última nota en dirección hacia la primera.

¿Por qué la denomino la reina del baile? Aparentemente es, por lo menos para los matemáticos, la transformación temática más conocida, y existen cientos de trabajos sobre ella, alguno de tan gran interés visual como el que cerrará este apartado. Todo con todo, en un contexto musical aunque no falten ejemplos de su uso sería deseable que no faltaran el resto de las transformaciones, que son las que nos van a proporcionar en ocasiones una extraordinaria flexibilidad y potencia a la hora de realizar nuestras obras, o, si ese es el caso, a la hora de comprender cómo están realizadas muchas de ellas.


La técnica suele denominarse también “del cangrejo”, dado que estos estimables crustáceos caminan hacia atrás.

Sé que a muchos daría un disgusto si no pongo como ejemplo de esta técnica el “canon cancrizante” de la Ofrenda musical. Allá va, en una hermosa versión visual que demuestra cómo podría perfectamente interpretarse que el canon está escrito en una Banda de Moebius. Prometo en su momento haceros saber de la existencia de más materiales retrógrados, aunque me será imposible elaborar algo gráficamente tan atractivo.

Inversión retrógrada (retrogradación inversa)

Seguramente ya habréis deducido que consiste en aplicar los procedimientos de inversión y retrogradación sobre  el material con el que estemos trabajando. Sólo quiero añadir que, visualmente no es preciso considerarla como el resultado de dos procedimientos. Tal y como podéis apreciar en el gráfico, una simple simetría diagonal nos da el resultado apetecido. Asumiendo, que es mucho asumir, que lo hubiera dibujado correctamente, doblando el dibujo por la línea diagonal las imágenes se superpondrían.

Un ejemplo “químicamente puro” y a la vez fácil de esta transformación es difícil de encontrar hasta el siguiente artículo. Os dejo un vínculo a otra parte de este blog en que encontraréis algo de uso de este procedimiento en los Catorce Cánones sobre el bajo de las Goldberg.

 

 

Índice de toda la serie
Visualizar la música, oír las matemáticas (1)
Visualizar la música, oír las matemáticas (2)
Visualizar la música, oír las matemáticas (3)
Visualizar la música, oír las matemáticas (4)
Visualizar la música, oír las matemáticas (5)
Visualizar la música, oír las matemáticas (y 6)

Enlace permanente a este artículo: http://enriqueblanco.net/2012/09/visualizar-la-musica-oir-las-matematicas-3/

2 comentarios

4 pings

    • Daniel Roca on 24 septiembre, 2012 at 19:12
    • Responder

    Una cosita de terminología, Enrique.
    Personalmente siempre he tenido una duda con el término inversión. Por supuesto que por lo general (y en todos los idiomas) se identifica inversión con movimiento contrario.
    No obstante, siempre he creído que esto no es del todo coherente, y me explico.

    Invertir un invervalo es cambiar la segunda nota de octava, es decir cuarta por quinta, sexta por tercera, etc. Algo parecido ocurre con la inversión del acorde, en la que son las mismas notas con otra fundamental.
    Entonces por qué llamamos “inversión” al movimiento contrario? ¿No sería más apropiado utilizar el término “espejo”, por ejemplo (que sería algo totalmente visual)?
    Digamos que la inversión/inversión es también un elemento de transformación motívica, si bien menos importante. Por ejemplo la introducción de la 104 de Haydn.

    Así lo tenemos de hecho recogido en el Vademecum.
    ¿qué opinas? ¿tiene un sentido llamar inversión al espejo o es más bien algo erigido por la costumbre?

  1. Casi totalmente de acuerdo. Empleo casi siempre la expresión “movimiento contrario”. “Inversión” no la empleo nada más que en aquellos casos —como éste. por motivos de divulgación— en que necesito ser coherente con la terminología más conocida y fácil de encontrar. “Espejo” es la parte que me produce dudas, por ser un artificio contrapuntístico que no coincide exactamente con el movimiento contrario. Puede, claro, expandirse su significado para que lo incluya, pero algo hay que no me acaba de convencer, debo pensarlo.

  1. […] « Visualizar la música, oír las matemáticas (3) […]

  2. […] Visualizar la música, oír las matemáticas (3) […]

  3. […] musicales aclaratorios van desde Sonrisas y Lágrimas hasta el Arte de la fuga de Bach. En Visualizar la música, oír las matemáticas (3) las inversiones entran en juego, con sorprendentes resultados. Las aumentaciones y disminuciones […]

  4. […] Visualizar la música, oír las matemáticas (3) » […]

Deja un comentario

A %d blogueros les gusta esto: